论文标题

在井井有条的posets上

On well-splitting posets

论文作者

Repovš, Dušan, Zdomskyy, Lyubomyr

论文摘要

我们介绍了一类适当的POSET,该Posets保留在可数的支撑迭代中,包括$ω^ω$ bounding,Cohen,Miller和Mathias Posets与Hurewicz相关的Hurewicz涵盖属性,并具有地面模型Real的属性,并在相应的扩展中散布并没有结合。我们的结果可能被认为是解决著名罗伊特人问题变化的可能道路。

We introduce a class of proper posets which is preserved under countable support iterations, includes $ω^ω$-bounding, Cohen, Miller, and Mathias posets associated to filters with the Hurewicz covering properties, and has the property that the ground model reals remain splitting and unbounded in corresponding extensions. Our results may be considered as a possible path towards solving variations of the famous Roitman problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源