论文标题
GNN-编码器:通过图神经网络学习双重编码器架构以进行密集通道检索
GNN-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Dense Passage Retrieval
论文作者
论文摘要
最近,由于与传统的稀疏矢量空间模型相比,基于密集表示的检索模型在通过捕获输入文本语义方面的出色能力而在段落检索任务中占主导地位。密集检索模型的一种常见实践是利用双重编码器架构来独立表示查询和段落。尽管有效,但这种结构在查询对对之间失去了相互作用,从而导致精度较低。为了增强密集检索模型的性能而不会降低效率,我们提出了一个GNN编码模型,其中查询(段落)信息通过图形神经网络融合到段落(QUERY)表示中,这些神经网络由查询及其最佳检索通道构建。通过这种方式,我们维护双重编码器结构,并在其表示中保留一些查询 - 通用对之间的相互作用信息,这使我们能够在通过检索中实现效率和效率。评估结果表明,我们的方法在MSMARCO,自然问题和Triviaqa数据集上大大优于现有模型,并在这些数据集上实现了新的最新技术。
Recently, retrieval models based on dense representations are dominant in passage retrieval tasks, due to their outstanding ability in terms of capturing semantics of input text compared to the traditional sparse vector space models. A common practice of dense retrieval models is to exploit a dual-encoder architecture to represent a query and a passage independently. Though efficient, such a structure loses interaction between the query-passage pair, resulting in inferior accuracy. To enhance the performance of dense retrieval models without loss of efficiency, we propose a GNN-encoder model in which query (passage) information is fused into passage (query) representations via graph neural networks that are constructed by queries and their top retrieved passages. By this means, we maintain a dual-encoder structure, and retain some interaction information between query-passage pairs in their representations, which enables us to achieve both efficiency and efficacy in passage retrieval. Evaluation results indicate that our method significantly outperforms the existing models on MSMARCO, Natural Questions and TriviaQA datasets, and achieves the new state-of-the-art on these datasets.