论文标题
可半曲线的克利福德不平等
A Clifford inequality for semistable curves
论文作者
论文摘要
令$ x $为半固定的曲线,而$ l $ $ l $ bundle的多电视是统一的,即结构捆绑包与$ x $的偶层捆绑之间的范围。我们为$ h^0(x,l)$建立了一个上限,该限制概括了经典的克利福德不平等,以实现平滑曲线。界限取决于$ l $的总学位和$ x $的双图的连接属性。从某种意义上说,在任何可分离的曲线上,都存在具有统一的多尺度的线束,可以实现绑定。
Let $X$ be a semistable curve and $L$ a line bundle whose multidegree is uniform, i.e., in the range between those of the structure sheaf and the dualizing sheaf of $X$. We establish an upper bound for $h^0(X,L)$, which generalizes the classic Clifford inequality for smooth curves. The bound depends on the total degree of $L$ and connectivity properties of the dual graph of $X$. It is sharp, in the sense that on any semistable curve there exist line bundles with uniform multidegree that achieve the bound.