论文标题
偏好增强了网络意识级联预测的社会影响建模
Preference Enhanced Social Influence Modeling for Network-Aware Cascade Prediction
论文作者
论文摘要
网络感知的级联尺寸预测旨在通过对社交网络中的传播过程进行建模来预测用户生成的最终数量的最终数量。通过社会影响估算用户的重新概率,即状态激活在信息扩散过程中起着重要作用。因此,可以模拟节点之间的信息相互作用的图形神经网络(GNN)已被证明是处理此预测任务的有效方案。但是,包括基于GNN的模型在内的现有研究通常忽略了用户偏好的重要因素,从而对国家的激活产生了深远的影响。为此,我们提出了一个新颖的框架,以通过三个阶段增强用户偏好建模,即偏好主题的生成,偏好转移建模和社会影响力激活,以促进级联尺寸的预测。我们的端到端方法使用户激活信息扩散过程更加自适应和准确。与最先进的基线相比,对两个大规模现实世界数据集进行了广泛的实验清楚地证明了我们所提出的模型的有效性。
Network-aware cascade size prediction aims to predict the final reposted number of user-generated information via modeling the propagation process in social networks. Estimating the user's reposting probability by social influence, namely state activation plays an important role in the information diffusion process. Therefore, Graph Neural Networks (GNN), which can simulate the information interaction between nodes, has been proved as an effective scheme to handle this prediction task. However, existing studies including GNN-based models usually neglect a vital factor of user's preference which influences the state activation deeply. To that end, we propose a novel framework to promote cascade size prediction by enhancing the user preference modeling according to three stages, i.e., preference topics generation, preference shift modeling, and social influence activation. Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate. Extensive experiments on two large-scale real-world datasets have clearly demonstrated the effectiveness of our proposed model compared to state-of-the-art baselines.