论文标题
反距离圆形包装与Riemann映射的收敛性
The convergence of inversive distance circle packings to the Riemann mapping
论文作者
论文摘要
鲍尔斯(Bowers)和斯蒂芬森(Stephenson)引入了反距离圆形包装的概念,作为瑟斯顿圆形包装的自然概括。他们进一步猜测,由反距离圆形包装引起的离散共形图会收敛到Riemann映射。在本文中,我们通过建立某些开处方的组合曲率问题来证明鲍尔斯·史密森对约旦域的猜想。
Bowers and Stephenson introduced the notion of inversive distance circle packings as a natural generalization of Thurston's circle packings. They further conjectured that discrete conformal maps induced by inversive distance circle packings converge to the Riemann mapping. In this paper, we prove Bowers-Stephenson's conjecture for Jordan domains by establishing a solvability theorem of certain prescribing combinatorial curvature problems for inversive distance circle packings.