论文标题

神经步态:通过控制屏障功能和零动力学策略学习两足动力

Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies

论文作者

Rodriguez, Ivan Dario Jimenez, Csomay-Shanklin, Noel, Yue, Yisong, Ames, Aaron D.

论文摘要

这项工作提出了神经步态,这是一种通过实施不变性的实施来学习动态步态步态的方法,可以使用机器人的实验数据进行偶发地完善。我们将步行作为设定的不变性问题,可通过控制屏障函数(CBF)在降低的阶动力学上定义的控制屏障函数(CBF),从而量化了机器人的不足组件:零动力学。我们的方法包含两个学习模块:一个用于学习满足CBF条件的策略,另一个用于学习残差动态模型以完善名义模型的缺陷。重要的是,仅在零动力学上学习会大大降低学习问题的维度,同时使用CBF,这使我们仍然可以保证全阶系统。该方法在不足的双足机器人上进行了实验证明,即使有部分未知的动力学,我们也能够显示出敏捷和动态运动。

This work presents Neural Gaits, a method for learning dynamic walking gaits through the enforcement of set invariance that can be refined episodically using experimental data from the robot. We frame walking as a set invariance problem enforceable via control barrier functions (CBFs) defined on the reduced-order dynamics quantifying the underactuated component of the robot: the zero dynamics. Our approach contains two learning modules: one for learning a policy that satisfies the CBF condition, and another for learning a residual dynamics model to refine imperfections of the nominal model. Importantly, learning only over the zero dynamics significantly reduces the dimensionality of the learning problem while using CBFs allows us to still make guarantees for the full-order system. The method is demonstrated experimentally on an underactuated bipedal robot, where we are able to show agile and dynamic locomotion, even with partially unknown dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源