论文标题
部分可观测时空混沌系统的无模型预测
A phase field model combined with genetic algorithm for polycrystalline hafnium zirconium oxide ferroelectrics
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Ferroelectric hafnium zirconium oxide (HZO) thin films show significant promise for applications in ferroelectric random-access memory, ferroelectric field-effect transistors, and ferroelectric tunneling junctions. However, there are shortcomings in understanding ferroelectric switching, which is crucial in the operation of these devices. Here a computational model based on phase field method is developed to simulate the switching behavior of polycrystalline HZO thin films. Furthermore, we introduce a novel approach to optimize the effective Landau coefficients describing the free energy of HZO by combining the phase field model with a genetic algorithm. We validate the model by accurately simulating switching curves for HZO thin films with different ferroelectric phase fractions. The simulated domain dynamics during switching also shows amazing similarity to the available experimental observations. The present work also provides fundamental insights into enhancing the ferroelectricity in HZO thin films by controlling grain morphology and crystalline texture. It can potentially be extended to improve the ferroelectric properties of other hafnia based thin films.