论文标题
部分可观测时空混沌系统的无模型预测
Nonlinear optical radiation of a lithium niobate microcavity
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The nonlinear optical radiation of an integrated lithium niobate microcavity is demonstrated, which has been neglected in previous studies of nonlinear photonic devices. We find that the nonlinear coupling between confined optical modes on the chip and continuum modes in free space can be greatly enhanced on the platform of integrated microcavity, with feasible relaxation of the phase-matching condition. With an infrared pump laser, we observe the vertical radiation of second-harmonic wave at the visible band, which indicates a robust phase-matching-free chip-to-free-space frequency converter and also unveils an extra energy dissipation channel for integrated devices. Such an unexpected coherent nonlinear interaction between the free-space beam and the confined mode is also validated by the different frequency generation. Furthermore, based on the phase-matching-free nature of the nonlinear radiation, we build an integrated atomic gas sensor to characterize Rb isotopes with a single telecom laser. The unveiled mechanism of nonlinear optical radiation is universal for all dielectric photonic integrated devices, and provides a simple and robust chip-to-free-space as well as visible-to-telecom interface.