论文标题

部分可观测时空混沌系统的无模型预测

Enabling Relative Localization for Nanodrone Swarm Platooning

论文作者

Sun, Wei

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Nanodrone swarm is formulated by multiple light-weight and low-cost nanodrones to perform the tasks in very challenging environments. Therefore, it is essential to estimate the relative position of nanodrones in the swarm for accurate and safe platooning in inclement indoor environment. However, the vision and infrared sensors are constrained by the line-of-sight perception, and instrumenting extra motion sensors on drone's body is constrained by the nanodrone's form factor and energy-efficiency. This paper presents the design, implementation and evaluation of RFDrone, a system that can sense the relative position of nanodrone in the swarm using wireless signals, which can naturally identify each individual nanodrone. To do so, each light-weight nanodrone is attached with a RF sticker (i.e., called RFID tag), which will be localized by the external RFID reader in the inclement indoor environment. Instead of accurately localizing each RFID-tagged nanodrone, we propose to estimate the relative position of all the RFID-tagged nanodrones in the swarm based on the spatial-temporal phase profiling. We implement an end-to-end physical prototype of RFDrone. Our experimental results show that RFDrone can accurately estimate the relative position of nanodrones in the swarm with average relative localization accuracy of around 0.95 across x, y and z axis, and average accuracy of around 0.93 for nanodrone swarm's geometry estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源