论文标题
部分可观测时空混沌系统的无模型预测
Mirror symmetry for quadric hypersurfaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We compute Przyjalkowski-Shramov's resolution of the Calabi-Yau compactification of Givental's mirror Landau-Ginzburg model of the quadric hypersurfaces. We deduce the Picard-Fuchs equation for the narrow periods, which mirror the ambient quantum cohomology of quadric hypersurfaces. Then by an indirect approach using the irreducibility of the narrow Picard-Fuchs operator we deduce the Picard-Fuchs equation of the broad period, which mirrors the quantum cohomology of quadric hypersurfaces involving primitive cohomology classes. The result suggests a natural choice of the opposite space in Barannikov's construction of Frobenius manifolds. Finally, we show an isomorphism between the Frobenius manifolds associated with the quantum cohomology of a quadric hypersurface and its mirror Landau-Ginzburg model.