论文标题
部分可观测时空混沌系统的无模型预测
COVIBOT: A Smart Chatbot for Assistance and E-Awareness during COVID-19 Pandemic
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The coronavirus pandemic has spread over the past two years in our highly connected and information-dense society. Nonetheless, disseminating accurate and up-to-date information on the spread of this pandemic remains a challenge. In this context, opting for a solution based on conversational artificial intelligence, also known under the name of the chatbot, is proving to be an unavoidable solution, especially since it has already shown its effectiveness in fighting the coronavirus crisis in several countries. This work proposes to design and implement a smart chatbot on the theme of COVID-19, called COVIBOT, which will be useful in the context of Saudi Arabia. COVIBOT is a generative-based contextual chatbot, which is built using machine learning APIs that are offered by the cloud-based Azure Cognitive Services. Two versions of COVIBOT are offered: English and Arabic versions. Use cases of COVIBOT are tested and validated using a scenario-based approach.