论文标题

部分可观测时空混沌系统的无模型预测

Global existence and blow-up of solutions to the porous medium equation with reaction and singular coefficients

论文作者

Meglioli, Giulia

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study global in time existence versus blow-up in finite time of solutions to the Cauchy problem for the porous medium equation with a variable density $ρ(x)$ and a power-like reaction term posed in the one dimensional interval $(-R,R)$, $R>0$. Here the weight function is singular at the boundary of the domain $(-R,R)$, indeed it is such that $ρ(x)\sim (R-|x|)^{-q}$ as $|x|\to R$, with $q\ge0$. We show a different behavior of solutions depending on the three cases when $q>2$, $q=2$ and $q<2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源