论文标题
部分可观测时空混沌系统的无模型预测
The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for Two-Dimensional Systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Open quantum systems are, in general, described by a density matrix that is evolving under transformations belonging to a dynamical semigroup. They can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation. We exhaustively study the case of a Hilbert space of dimension $2$. First, we find final fixed states (called pointers) of an evolution of an open system, and we then obtain a general solution to the FGKLS equation and confirm that it converges to a pointer. After this, we check that the solution has physical meaning, i.e., it is Hermitian, positive and has trace equal to $1$, and find a moment of time starting from which the FGKLS equation can be used - the range of applicability of the semigroup symmetry. Next, we study the behavior of a solution for a weak interaction with an environment and make a distinction between interacting and non-interacting cases. Finally, we prove that there cannot exist oscillating solutions to the FGKLS equation, which would resemble the behavior of a closed quantum system.