论文标题
部分可观测时空混沌系统的无模型预测
Pushing the Performance Limit of Scene Text Recognizer without Human Annotation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Scene text recognition (STR) attracts much attention over the years because of its wide application. Most methods train STR model in a fully supervised manner which requires large amounts of labeled data. Although synthetic data contributes a lot to STR, it suffers from the real-tosynthetic domain gap that restricts model performance. In this work, we aim to boost STR models by leveraging both synthetic data and the numerous real unlabeled images, exempting human annotation cost thoroughly. A robust consistency regularization based semi-supervised framework is proposed for STR, which can effectively solve the instability issue due to domain inconsistency between synthetic and real images. A character-level consistency regularization is designed to mitigate the misalignment between characters in sequence recognition. Extensive experiments on standard text recognition benchmarks demonstrate the effectiveness of the proposed method. It can steadily improve existing STR models, and boost an STR model to achieve new state-of-the-art results. To our best knowledge, this is the first consistency regularization based framework that applies successfully to STR.