论文标题

服务器免费无线联合学习:体系结构,算法和分析

Server Free Wireless Federated Learning: Architecture, Algorithm, and Analysis

论文作者

Yang, Howard H., Chen, Zihan, Quek, Tony Q. S.

论文摘要

我们证明,仅模拟传输和匹配过滤可以实现边缘服务器在联合学习(FL)中的功能。因此,具有大量分布式用户设备(UES)的网络可以实现无边缘服务器的大规模FL。我们还开发了一种培训算法,该算法允许UES不受全局参数上传的打断而不断地执行本地计算,从而利用了UES处理能力的全部潜力。我们得出了拟议方案的收敛速率,以量化其训练效率。分析表明,当干扰遵守高斯分布时,提出的算法会检索基于服务器的FL的收敛速率。但是,如果干扰分布是重尾的,则尾巴越重,算法会收敛的速度慢。但是,系统运行时间可以通过与通信并行启用计算来大大减少,而在通信延迟较高时,增益特别明显。这些发现通过过多的模拟得到证实。

We demonstrate that merely analog transmissions and match filtering can realize the function of an edge server in federated learning (FL). Therefore, a network with massively distributed user equipments (UEs) can achieve large-scale FL without an edge server. We also develop a training algorithm that allows UEs to continuously perform local computing without being interrupted by the global parameter uploading, which exploits the full potential of UEs' processing power. We derive convergence rates for the proposed schemes to quantify their training efficiency. The analyses reveal that when the interference obeys a Gaussian distribution, the proposed algorithm retrieves the convergence rate of a server-based FL. But if the interference distribution is heavy-tailed, then the heavier the tail, the slower the algorithm converges. Nonetheless, the system run time can be largely reduced by enabling computation in parallel with communication, whereas the gain is particularly pronounced when communication latency is high. These findings are corroborated via excessive simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源