论文标题
营养肿瘤生长:规律性和稳定性
Tumor Growth with Nutrients: Regularity and Stability
论文作者
论文摘要
在本文中,我们研究了具有养分的肿瘤生长模型。由于肿瘤细胞之间的接触抑制,该模型提出了动态斑块溶液。我们表明,当营养不扩散并且细胞不会死亡时,肿瘤密度会表现出正则动力学。特别是,我们提供收缩估计值,渐近收敛的指数速率以及肿瘤斑块的边界规律性。这些结果与养分扩散或肿瘤细胞中的死亡率形成鲜明对比。
In this paper we study a tumor growth model with nutrients. The model presents dynamic patch solutions due to the contact inhibition among the tumor cells. We show that when the nutrients do not diffuse and the cells do not die, the tumor density exhibits regularizing dynamics. In particular, we provide contraction estimates, exponential rate of asymptotic convergence, and boundary regularity of the tumor patch. These results are in sharp contrast to the models either with nutrient diffusion or with death rate in tumor cells.