论文标题

低光图像问题中的半监督大气成分学习

Semi-supervised atmospheric component learning in low-light image problem

论文作者

Fahim, Masud An Nur Islam, Saqib, Nazmus, Yub, Jung Ho

论文摘要

环境照明条件在确定来自照相设备的图像的感知质量方面起着至关重要的作用。通常,变速箱光和不希望的大气条件不足会共同降低图像质量。如果我们知道与给定弱光图像相关的所需环境因子,则可以轻松恢复增强的图像\ cite {b1}。典型的深网进行增强映射,而无需研究光分布和颜色配方特性。这导致在实践中缺乏图像实例自适应表现。另一方面,物理模型驱动的方案遭受了对固有分解和多种客观最小化的需求。此外,以上方法很少有效或没有预测后调整。受上述问题的影响,本研究使用无参考图像质量指标提出了一种半监视的训练方法,以进行低光图像恢复。我们结合了经典的雾霾分布模型\ cite {b2},以探索给定图像的物理特性,以了解大气成分的效果并最大程度地减少恢复的单个目标。我们验证了六个广泛使用的低光数据集的网络性能。实验表明,拟议的研究实现了最先进或可比的表现。

Ambient lighting conditions play a crucial role in determining the perceptual quality of images from photographic devices. In general, inadequate transmission light and undesired atmospheric conditions jointly degrade the image quality. If we know the desired ambient factors associated with the given low-light image, we can recover the enhanced image easily \cite{b1}. Typical deep networks perform enhancement mappings without investigating the light distribution and color formulation properties. This leads to a lack of image instance-adaptive performance in practice. On the other hand, physical model-driven schemes suffer from the need for inherent decompositions and multiple objective minimizations. Moreover, the above approaches are rarely data efficient or free of postprediction tuning. Influenced by the above issues, this study presents a semisupervised training method using no-reference image quality metrics for low-light image restoration. We incorporate the classical haze distribution model \cite{b2} to explore the physical properties of the given image in order to learn the effect of atmospheric components and minimize a single objective for restoration. We validate the performance of our network for six widely used low-light datasets. The experiments show that the proposed study achieves state-of-the-art or comparable performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源