论文标题

伸展句子对NLI模型以对长文档和群集进行推理

Stretching Sentence-pair NLI Models to Reason over Long Documents and Clusters

论文作者

Schuster, Tal, Chen, Sihao, Buthpitiya, Senaka, Fabrikant, Alex, Metzler, Donald

论文摘要

NLP社区已经对自然语言推论(NLI)进行了广泛的研究,以估算句子对之间的语义关系。尽管早期工作确定了NLI模型中的某些偏见,但建模和数据集的最新进步表现出了有希望的性能。在这项工作中,我们进一步探讨了NLI模型对实际应用的直接零摄像适用性,除了他们接受过训练的句子对设置之外。首先,我们分析了这些模型的鲁棒性,以更长和室外输入。然后,我们开发新的聚合方法,以允许在完整文档上运行,从而在合同NLI数据集上达到最先进的性能。有趣的是,我们发现NLI分数提供了强大的检索信号,与基于共同的相似性方法相比,提取了更多相关的证据。最后,我们走得更远,研究整个文档群集,以确定来源之间的差异和共识。在测试案例中,我们发现Wikipedia页面之间有关同一主题的不同语言之间的不一致之处。

Natural Language Inference (NLI) has been extensively studied by the NLP community as a framework for estimating the semantic relation between sentence pairs. While early work identified certain biases in NLI models, recent advancements in modeling and datasets demonstrated promising performance. In this work, we further explore the direct zero-shot applicability of NLI models to real applications, beyond the sentence-pair setting they were trained on. First, we analyze the robustness of these models to longer and out-of-domain inputs. Then, we develop new aggregation methods to allow operating over full documents, reaching state-of-the-art performance on the ContractNLI dataset. Interestingly, we find NLI scores to provide strong retrieval signals, leading to more relevant evidence extractions compared to common similarity-based methods. Finally, we go further and investigate whole document clusters to identify both discrepancies and consensus among sources. In a test case, we find real inconsistencies between Wikipedia pages in different languages about the same topic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源