论文标题

新的基于纠缠措施的双熵

A new entanglement measure based dual entropy

论文作者

Yang, Xue, Yang, Yan-Han, Zhao, Li-Ming, Luo, Ming-Xing

论文摘要

量子熵是描述量子状态不确定性的重要措施,子系统中更多的不确定性意味着子系统之间的量子纠缠更强。我们在这项工作中的目标是使用von Neumann熵及其互补偶来量化双方纠缠。我们首先提出了香农熵的一种双熵。我们定义$ s^{t} $ - 基于von Neumann熵及其互补双重的熵纠缠。这意味着针对双Quity系统的分析公式。我们表明,$ s^{t} $ - 熵纠缠和编队纠缠的一夫一妻制对高维系统的等值是不相等的。我们最终根据$ s^{t} $ - 量子纠缠网络的熵纠缠而证明了一种新型的纠缠多边形不平等。这些结果显示了量子信息处理中多方纠缠的新特征。

Quantum entropy is an important measure for describing the uncertainty of a quantum state, more uncertainty in subsystems implies stronger quantum entanglement between subsystems. Our goal in this work is to quantify bipartite entanglement using both von Neumann entropy and its complementary dual. We first propose a type of dual entropy from Shannon entropy. We define $S^{t}$-entropy entanglement based on von Neumann entropy and its complementary dual. This implies an analytic formula for two-qubit systems. We show that the monogamy properties of the $S^{t}$-entropy entanglement and the entanglement of formation are inequivalent for high-dimensional systems. We finally prove a new type of entanglement polygon inequality in terms of $S^{t}$-entropy entanglement for quantum entangled networks. These results show new features of multipartite entanglement in quantum information processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源