论文标题

当通用包裹的代数完成时,是Banach Pi-Algebra吗?

When a completion of the universal enveloping algebra is a Banach PI-algebra?

论文作者

Aristov, Oleg

论文摘要

我们证明,一个有限维综合体的普遍包围代数的Banach代数$ b $ lie代数为代数$ \ mathfrak {g} $,并且仅当nilpotent the nilpotent the nilpotent $ \ mathfrak {n} $ of Mathfrak of $ \ mathfrak $ b $ niltife and nilpotent and of nilpotent of nilpotent of nilpotent n nilpot。此外,仅当$ \ mathfrak {n} $满足某个多项式增长条件时,这才能保持。

We prove that a Banach algebra $B$ that is a completion of the universal enveloping algebra of a finite-dimensional complex Lie algebra $\mathfrak{g}$ satisfies a polynomial identity if and only if the nilpotent radical $\mathfrak{n}$ of $\mathfrak{g}$ is associatively nilpotent in $B$. Furthermore, this holds if and only if a certain polynomial growth condition is satisfied on $\mathfrak{n}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源