论文标题

原位小角度X射线散射显示硅化过程中DNA折纸的浓缩

In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification

论文作者

Ober, Martina F., Baptist, Anna, Wassermann, Lea, Heuer-Jungemann, Amelie, Nickel, Bert

论文摘要

DNA折纸结构的硅化增加了其机械和热稳定性,并提供化学保护。到目前为止,尚不清楚硅化如何影响DNA折纸的内部结构,以及整个DNA框架是否嵌入,或者二氧化硅是否仅形成外壳。通过使用原位小角度X射线散射(SAXS),我们表明净阵容二氧化硅前体TMAP诱导了DNA折纸的实质性凝结,通过在早期反应时间添加Teos至接近10%的尺寸减少,这可以进一步增强。我们将SAXS POROD不变性识别为一个可靠的,无模型的参数,用于评估给定时间的二氧化硅形成量。 DNA双螺旋洛伦兹峰的对比匹配表明,二氧化硅的生长也发生在折纸的内表面上。折纸结构内形成的极性二氧化硅较少,取代超过40%的内部水合水会产生疏水作用:折纸凝结。在最大凝结状态下,可以观察到折纸的热稳定至60°C。如果反应是超出了这一点的驱动,则由于越来越多的二氧化硅沉积在DNA折纸上,硅化折纸的总尺寸再次增加。具有平坦表面的DNA折纸物体在硅化过程中表现出强烈的聚集趋势,大概是由相同的熵力驱动的,导致凝结。我们的研究提供了有关硅化反应的新见解,并提示了优化反应方案的制定。

The silicification of DNA origami structures increases their mechanical and thermal stability and provides chemical protection. So far, it is unclear how silicification affects the internal structure of the DNA origami and whether the whole DNA framework is embedded or if silica just forms an outer shell. By using in situ small-angle X-ray scattering (SAXS), we show that the net-cationic silica precursor TMAPS induces substantial condensation of the DNA origami, which is further enhanced by the addition of TEOS at early reaction times to an almost 10 % size reduction. We identify the SAXS Porod invariant as a reliable, model-free parameter for the evaluation of the amount of silica formation at a given time. Contrast matching of the DNA double helix Lorentzian peak reveals that silica growth also occurs on the inner surfaces of the origami. The less polar silica forming within the origami structure, replacing more than 40 % of the internal hydration water causes a hydrophobic effect: origami condensation. In the maximally condensed state, thermal stabilization of the origami up to 60 °C could be observed. If the reaction is driven beyond this point, the overall size of the silicified origami increases again due to more and more silica deposition on the DNA origami. DNA origami objects with flat surfaces show a strong tendency towards aggregation during silicification, presumably driven by the very same entropic forces causing condensation. Our studies provide novel insights into the silicification reaction and hints for the formulation of optimized reaction protocols.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源