论文标题
在基本$ 2 $ -ARC传递图
On basic $2$-arc-transitive graphs
论文作者
论文摘要
连接的图$γ=(v,e)$的价至少$ 3 $称为基本$ 2 $ -2 $ -Arc-transitive Graph,如果其完整的自动形态学组具有以下属性的亚组$ G $:(I)$ G $ ACT在每个$γ$的$ 2 $ -2 $ $ $ $ $ $ $ $ g的$ 2 $ -2 $ -2 $ -2 $ $ $ g的$ 2 $中,则是$ g的。 在她的论文[17,18]中,Praeger证明了一个连接的$ 2 $ -2 $ -ARC传递的价值图,至少$ 3 $是某些基本$ 2 $ -2 $ -ARC传播的图表的正常封面,并表征了基本$ 2 $ 2 $ -ARC-arc-pransistitive the Group Wheoretic结构。 根据Praeger在$ 2 $ -ARC传递图上的定理,本文对基本$ 2 $ -ARC-TRANSNANSTIVE图的进一步了解。
A connected graph $Γ=(V,E)$ of valency at least $3$ is called a basic $2$-arc-transitive graph if its full automorphism group has a subgroup $G$ with the following properties: (i) $G$ acts transitively on the set of $2$-arcs of $Γ$, and (ii) every minimal normal subgroup of $G$ has at most two orbits on $V$. In her papers [17,18], Praeger proved a connected $2$-arc-transitive graph of valency at least $3$ is a normal cover of some basic $2$-arc-transitive graph, and characterized the group-theoretic structures for basic $2$-arc-transitive graphs. Based on Praeger's theorems on $2$-arc-transitive graphs, this paper presents a further understanding on basic $2$-arc-transitive graphs.