论文标题

循环长度为质数的排列数量的渐近数

The asymptotic of the number of permutations whose cycle lengths are prime numbers

论文作者

Mutafchiev, Ljuben

论文摘要

令$ a $为一组自然数字,让$ s_ {n,a} $是$ [n] = \ {1,2,...,n \} $的所有排列的集合,属于$ a $。此外,令$ \ mid a(n)\ mid $表示集合$ a(n)= a \ cap [n] $的基数。限制$ρ= \ lim_ {n \ to \ infty} \ mid a(n)\ mid/n $(如果存在)称为集合$ a $的密度。事实证明,作为$ n \ to \ infty $,基数$ \ mid s_ {n,a} \ mid $的$ s_ {n,a} $基本上取决于$ρ$。 $ρ> 0 $在某些其他条件下对$ a $进行了研究。 1999年,科尔钦(Kolchin)注意到,缺乏对$ρ= 0 $的排列类别的研究。在这种情况下,他还建议对某些特定情况进行调查。在本文中,我们考虑其循环长度为质量数字的排列,也就是说,我们假设$ a = \ Mathcal {p} $,其中$ \ Mathcal {p} $表示所有素数的集合。对于此类排列,质数定理意味着$ρ= 0 $。在本文中,我们表明,作为$ n \ to \ infty $,比率$ s_ {n,\ mathcal {p}}/(n-1)!$接近有限限制并明确确定其值。我们的证明方法采用古典陶伯里亚定理。

Let $A$ be a set of natural numbers and let $S_{n,A}$ be the set of all permutations of $[n]=\{1,2,...,n\}$ with cycle lengths belonging to $A$. Furthermore, let $\mid A(n)\mid$ denote the cardinality of the set $A(n)=A\cap [n]$. The limit $ρ=\lim_{n\to\infty}\mid A(n)\mid/n$ (if it exists) is called the density of set $A$. It turns out that, as $n\to\infty$, the cardinality $\mid S_{n,A}\mid$ of the set $S_{n,A}$ essentially depends on $ρ$. The case $ρ>0$ was studied by several authors under certain additional conditions on $A$. In 1999, Kolchin noticed that there is a lack studies on classes of permutations for which $ρ=0$. In this context, he also proposed investigations on certain particular cases. In this paper, we consider the permutations whose cycle lengths are prime numbers, that is, we assume that $A=\mathcal{P}$, where $\mathcal{P}$ denotes the set of all primes. For this class of permutations, the Prime Number Theorem implies that $ρ=0$. In this paper, we show that, as $n\to\infty$, the ratio $S_{n,\mathcal{P}}/(n-1)!$ approaches a finite limit and determine its value explicitly. Our method of proof employs classical Tauberian theorems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源