论文标题
用于公共项目问题自动化机制设计的机器学习方法
Machine Learning Approaches to Automated Mechanism Design for Public Project Problem
论文作者
论文摘要
机理设计是微观经济学的中央研究部门。有效的机制可以显着提高所需目标下的社会决策的绩效和效率,例如最大化社会福利或最大化代理商的收入。但是,对于许多常见模型,包括我们在本文中研究的公共项目问题模型,包括公共项目问题模型,这是具有挑战性的。一个典型的公共项目问题是一群代理商众筹公共项目(例如,建造桥梁)。该机制将根据其估值来决定每个代理商的付款和分配(例如,代理商支付多少以及代理是否可以使用)。该机制可以应用于各种经济方案,包括与网络安全有关的机制。对于不同的公共项目场景(子问题),有不同的限制和优化的目标,使设计适合所有方案的通用机制变得不现实,并且为不同的设置设计机制是一项征税工作。因此,我们探讨了不同限制的公共项目问题的自动化机制设计(AMD)。 在本论文中,我们关注公共项目问题,其中包括许多子问题(不可排除/不可判断,可划分/不可分割的二进制/非二进制)。我们研究了古典公共项目模型,并将此模型扩展到其他相关领域,例如零日的利用市场。对于公共项目问题的不同子问题,我们采用不同的新型机器学习技术来通过自动机制设计设计最佳或近乎最佳的机制。我们通过理论分析或实验将我们的机制与现有机制进行比较来评估我们的机制。实验和理论结果表明,我们的机制比最新的自动化或手动机制更好。
Mechanism design is a central research branch in microeconomics. An effective mechanism can significantly improve performance and efficiency of social decisions under desired objectives, such as to maximize social welfare or to maximize revenue for agents. However, mechanism design is challenging for many common models including the public project problem model which we study in this thesis. A typical public project problem is a group of agents crowdfunding a public project (e.g., building a bridge). The mechanism will decide the payment and allocation for each agent (e.g., how much the agent pays, and whether the agent can use it) according to their valuations. The mechanism can be applied to various economic scenarios, including those related to cyber security. There are different constraints and optimized objectives for different public project scenarios (sub-problems), making it unrealistic to design a universal mechanism that fits all scenarios, and designing mechanisms for different settings manually is a taxing job. Therefore, we explore automated mechanism design (AMD) of public project problems under different constraints. In this thesis, we focus on the public project problem, which includes many sub-problems (excludable/non-excludable, divisible/indivisible, binary/non-binary). We study the classical public project model and extend this model to other related areas such as the zero-day exploit markets. For different sub-problems of the public project problem, we adopt different novel machine learning techniques to design optimal or near-optimal mechanisms via automated mechanism design. We evaluate our mechanisms by theoretical analysis or experimentally comparing our mechanisms against existing mechanisms. The experiments and theoretical results show that our mechanisms are better than state-of-the-art automated or manual mechanisms.