论文标题

$ \ rm gl_3 \ times gl_2 $ $ $ $ $ l $ functions的曲折的界限与复合模量

A bound for twists of $\rm GL_3\times GL_2$ $L$-functions with composite modulus

论文作者

Sun, Qingfeng, Yu, Yanxue

论文摘要

令$π$为$ \ rm sl_3(\ mathbf {z})$的hecke-maass cusp表格,让$ g $为holomorphic或maass cusp form $ \ rm sl_2(\ mathbf {z}})$。令$χ$为模量的原始dirichlet字符$ m = m_1m_2 $,$ m_i $ prime,$ i = 1,2 $。假设$ m^{1/2+2η} <m_1 <m^{1-2η} $,$ 0 <η<1/8 $。然后,我们有$$ l \ left(\ frac {1} {2},π\ otimes g \ otimesχ\ right)\ ll_ {π,g,g,\ varepsilon} m^{3/2-+\ varepsilon}。 $$

Let $π$ be a Hecke-Maass cusp form for $\rm SL_3(\mathbf{Z})$ and let $g$ be a holomorphic or Maass cusp form for $\rm SL_2(\mathbf{Z})$. Let $χ$ be a primitive Dirichlet character of modulus $M=M_1M_2$ with $M_i$ prime, $i=1,2$. Suppose that $M^{1/2+2η}<M_1<M^{1-2η}$ with $0<η<1/8$. Then we have $$ L\left(\frac{1}{2},π\otimes g \otimes χ\right)\ll_{π,g,\varepsilon} M^{3/2-η+\varepsilon}. $$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源