论文标题

鲁棒施法器:QoS-Aware Autoscaling用于复杂的工作负载

RobustScaler: QoS-Aware Autoscaling for Complex Workloads

论文作者

Qian, Huajie, Wen, Qingsong, Sun, Liang, Gu, Jing, Niu, Qiulin, Tang, Zhimin

论文摘要

自动化是有效资源利用的关键组件,并在云计算中具有令人满意的服务质量(QoS)。本文研究了每个查询需要缩放的广泛规模应用程序,例如容器注册表和功能-AS-AS-Service(FAAS)。在这些情况下,工作量通常具有高度不确定性,具有复杂的时间模式,例如周期性,噪音和异常值。不必要地扩大许多实例的保守策略导致了高昂的资源成本,而积极进取的策略可能会导致QoS差。我们提出了强大的范围,以实现成本和QoS之间的较高权衡。具体而言,我们设计了一个基于非均匀泊松工艺(NHPP)建模和随机约束优化的新型自动化框架。此外,我们开发了一种专门的乘数交替方向方法(ADMM),以有效地训练NHPP模型,并严格证明我们基于优化的主动策略提供的QoS保证。广泛的实验表明,鲁棒尺度的表现优于各种现实世界中的常见基线自动式策略,具有较大的利润率用于复杂的工作量模式。

Autoscaling is a critical component for efficient resource utilization with satisfactory quality of service (QoS) in cloud computing. This paper investigates proactive autoscaling for widely-used scaling-per-query applications where scaling is required for each query, such as container registry and function-as-a-service (FaaS). In these scenarios, the workload often exhibits high uncertainty with complex temporal patterns like periodicity, noises and outliers. Conservative strategies that scale out unnecessarily many instances lead to high resource costs whereas aggressive strategies may result in poor QoS. We present RobustScaler to achieve superior trade-off between cost and QoS. Specifically, we design a novel autoscaling framework based on non-homogeneous Poisson processes (NHPP) modeling and stochastically constrained optimization. Furthermore, we develop a specialized alternating direction method of multipliers (ADMM) to efficiently train the NHPP model, and rigorously prove the QoS guarantees delivered by our optimization-based proactive strategies. Extensive experiments show that RobustScaler outperforms common baseline autoscaling strategies in various real-world traces, with large margins for complex workload patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源