论文标题
这是概率回路的时刻
This Is the Moment for Probabilistic Loops
论文作者
论文摘要
我们提出了一种新颖的静态分析技术,可为具有潜在不可数量的状态空间的大量概率回路提供更高的程序变量矩。我们的方法是完全自动的,这意味着它不依赖于外部提供的不变性或模板。我们采用基于线性复发的代数技术,并引入程序转换以简化概率程序,同时保留其统计属性。我们开发还原技术来进一步简化概率程序的多项式算术,并定义可准确计算较高矩的可计算概率循环的理论。我们的工作有针对恢复随机变量和计算尾概率的概率分布的应用。对我们结果的经验评估证明了我们的工作在许多具有挑战性的例子上的适用性。
We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.