论文标题

通过非平稳连续过滤器的放松肩riveence限制

Relaxing Equivariance Constraints with Non-stationary Continuous Filters

论文作者

van der Ouderaa, Tycho F. A., Romero, David W., van der Wilk, Mark

论文摘要

等效性在神经网络建模中提供了有用的归纳偏见,而卷积神经网络的翻译均值是一个规范的例子。模棱两可可以通过重量共享嵌入体系结构中,并将对称约束放在神经网络可以代表的功能上。对称的类型通常是固定的,必须提前选择。尽管某些任务本质上是均等的,但许多任务并未严格遵循此类对称性。在这种情况下,均衡限制可能过于限制。在这项工作中,我们提出了均衡性的参数效率放松,可以有效地在(i)非等分线性产品((ii)严格的等级卷积和(iii)严格不变的映射之间进行有效插值。可以将所提出的参数化视为构建块,以允许神经网络中的可调节对称结构。此外,我们证明可以使用反向传播从训练数据中学到的均衡量。与交叉验证相比,基于梯度的模棱两可的学习能够达到相似或改善的性能,并且在CIFAR-10和CIFAR-1000和CIFAR-100图像分类任务上胜过跨验验和表现优于基准。

Equivariances provide useful inductive biases in neural network modeling, with the translation equivariance of convolutional neural networks being a canonical example. Equivariances can be embedded in architectures through weight-sharing and place symmetry constraints on the functions a neural network can represent. The type of symmetry is typically fixed and has to be chosen in advance. Although some tasks are inherently equivariant, many tasks do not strictly follow such symmetries. In such cases, equivariance constraints can be overly restrictive. In this work, we propose a parameter-efficient relaxation of equivariance that can effectively interpolate between a (i) non-equivariant linear product, (ii) a strict-equivariant convolution, and (iii) a strictly-invariant mapping. The proposed parameterisation can be thought of as a building block to allow adjustable symmetry structure in neural networks. In addition, we demonstrate that the amount of equivariance can be learned from the training data using backpropagation. Gradient-based learning of equivariance achieves similar or improved performance compared to the best value found by cross-validation and outperforms baselines with partial or strict equivariance on CIFAR-10 and CIFAR-100 image classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源