论文标题

多线性和半偶联多项式在八元代数上的图像

The images of multilinear and semihomogeneous polynomials on the algebra of octonions

论文作者

Kanel-Belov, Alexei, Malev, Sergey, Pines, Coby, Rowen, Louis

论文摘要

广义的L'Vov-Kaplansky猜想指出,对于任何有限的简单代数$ a $ $ a $ a $ a $ a $ a $的图像是矢量空间。在本文中,我们证明了在满足某些指定条件的字段上的八元代数$ \ mathbb {o} $(特别是,我们证明了这是针对四型封闭的字段和字段$ \ mathbb {r} $)的。 实际上,我们证明该图像集必须为$ \ {0 \} $,$ f $,纯八元$ v $的空间或$ \ mathbb {o} $。我们讨论了对$ \ mathbb {O} $的半偶联多项式的可能评估以及对相应的Malcev代数上的任意多项式的评估。

The generalized L'vov-Kaplansky conjecture states that for any finite-dimensional simple algebra $A$ the image of a multilinear polynomial on $A$ is a vector space. In this paper we prove it for the algebra of octonions $\mathbb{O}$ over a field satisfying certain specified conditions (in particular, we prove it for quadratically closed field and for field $\mathbb{R}$). In fact, we prove that the image set must be either $\{0\}$, $F$, the space of pure octonions $V$, or $\mathbb{O}$. We discuss possible evaluations of semihomogeneous polynomials on $\mathbb{O}$ and of arbitrary polynomials on the corresponding Malcev algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源