论文标题
基于机器学习的光纤监测中的异常检测
Machine Learning-based Anomaly Detection in Optical Fiber Monitoring
论文作者
论文摘要
光网络中的安全可靠数据通信对于高速互联网至关重要。但是,光纤作为数据传输介质,可为全球用户提供连通性,容易出现因艰苦失败(例如纤维削减)和恶意的身体攻击而导致的各种异常,例如,光学窃听(纤维敲击)可能会导致网络损失和构成巨大的损失,并构成巨大的损失,并构成了巨大的损害,并构成了巨大的损害,并造成了巨大的损害,通过未经授权访问携带的数据或逐渐降低网络操作来获得网络。因此,实施有效的异常检测,诊断和定位方案以增强光网络的可用性和可靠性是高的。在本文中,我们提出了一种数据驱动的方法,以准确,快速检测,诊断和定位纤维异常,包括剪切和光学窃听攻击。所提出的方法结合了基于自动编码器的异常检测和基于注意力的双向封盖复发单位算法,其中前者用于故障检测,后者被用于故障诊断和定位,一旦自动配置器检测到异常。我们使用实际操作数据在各种异常情况下通过实验来验证我们提出的方法的效率。实验结果表明:(i)自动编码器检测到F1分数为96.86%的任何纤维断层或异常; (ii)基于注意力的双向门控复发单元算法识别检测到的异常,平均精度为98.2%,并以平均均方根误差为0.19 m的故障定位。
Secure and reliable data communication in optical networks is critical for high-speed Internet. However, optical fibers, serving as the data transmission medium providing connectivity to billons of users worldwide, are prone to a variety of anomalies resulting from hard failures (e.g., fiber cuts) and malicious physical attacks (e.g., optical eavesdropping (fiber tapping)) etc. Such anomalies may cause network disruption and thereby inducing huge financial and data losses, or compromise the confidentiality of optical networks by gaining unauthorized access to the carried data, or gradually degrade the network operations. Therefore, it is highly required to implement efficient anomaly detection, diagnosis, and localization schemes for enhancing the availability and reliability of optical networks. In this paper, we propose a data driven approach to accurately and quickly detect, diagnose, and localize fiber anomalies including fiber cuts, and optical eavesdropping attacks. The proposed method combines an autoencoder-based anomaly detection and an attention-based bidirectional gated recurrent unit algorithm, whereby the former is used for fault detection and the latter is adopted for fault diagnosis and localization once an anomaly is detected by the autoencoder. We verify the efficiency of our proposed approach by experiments under various anomaly scenarios using real operational data. The experimental results demonstrate that: (i) the autoencoder detects any fiber fault or anomaly with an F1 score of 96.86%; and (ii) the attention-based bidirectional gated recurrent unit algorithm identifies the the detected anomalies with an average accuracy of 98.2%, and localizes the faults with an average root mean square error of 0.19 m.