论文标题
农民机器人:针对农民的互动机器人
Farmer-Bot: An Interactive Bot for Farmers
论文作者
论文摘要
印度农业部门产生了庞大的就业,占国家劳动力的54%以上。它在GDP中的总体立场接近14%。但是,该部门受到知识和基础设施不足的困扰,尤其是在农村部门。像其他部门一样,印度农业部门使用技术的使用快速数字化,而基桑呼叫中心(KCC)就是这样的例子。它是一项印度政府倡议,于2004年1月21日启动,这是迄今为止两个部门信息技术和农业部门的综合。但是,研究表明对KCC受益人有限制,尤其是鉴于网络拥堵和对呼叫中心代表的不完整知识。随着新技术的出现,例如基于第一代SMS和下一代社交媒体工具(例如WhatsApp),印度的农民在数字上与农业信息服务有更多的联系。先前的研究表明,KCC数据集可以用作聊天机器人的可行替代方案。我们将通过可用的KCC数据集进行研究基础,以通过获取过去农民的疑问的语义相似性来构建NLP模型,并使用它自动回答未来的查询。我们将尝试制作一个基于WhatsApp的聊天机器人,以轻松与使用RASA作为工具的农民进行交流。
The Indian Agricultural sector generates huge employment accounting for over 54% of countrys workforce. Its overall stand in GDP is close to 14%. However, this sector has been plagued by knowledge and infrastructure deficit, especially in the rural sectors. Like other sectors, the Indian Agricultural sector has seen rapid digitization with use of technology and Kisan Call Center (KCC) is one such example. It is a Government of India initiative launched on 21st January 2004 which is a synthesis of two hitherto separate sectors the Information Technology and Agriculture sector. However, studies have shown to have constrains to KCC beneficiaries, especially in light of network congestion and incomplete knowledge of the call center representatives. With the advent of new technologies, like first-generation SMS based and next-generation social media tools like WhatsApp, farmers in India are digitally more connected to the agricultural information services. Previous studies have shown that the KCC dataset can be used as a viable alternative for Chat-bot. We will base our study with the available KCC dataset to build an NLP model by getting the semantic similarity of the queries made by farmers in the past and use it to automatically answer future queries. We will attempt to make a WhatsApp based chat-bot to easily communicate with farmers using RASA as a tool.