论文标题
多球对话推荐系统的统一多任务学习框架
A Unified Multi-task Learning Framework for Multi-goal Conversational Recommender Systems
论文作者
论文摘要
近年来,在开发多进球对话推荐系统(MG-CR)方面取得了一些进展,这些系统可以主动吸引用户的兴趣,并自然地领导用户参与的对话,具有多个对话目标和各种主题。 MG-CRS通常涉及四个任务,包括目标计划,主题预测,项目建议和响应生成。大多数现有的研究仅解决其中一些任务。为了处理MG-CRS的整个问题,采用模块化框架,在无需考虑其相互依赖的情况下独立解决每个任务。在这项工作中,我们提出了一种新型的统一的多球对话推荐系统,即无限制。具体而言,我们将这四个任务具有不同的配方统一为相同的顺序到序列(SEQ2SEQ)范式。研究基于及时的学习策略,以赋予统一模型的多任务学习能力。最后,整体学习和推理过程包括三个阶段,包括多任务学习,基于及时的调整和推理。对两个MG-CRS基准测试的实验结果(durecdial和TG-REDIAL)表明,Unimind具有统一模型的所有任务上的最新性能。提供了广泛的分析和讨论,以阐明MG-CRS的一些新观点。
Recent years witnessed several advances in developing multi-goal conversational recommender systems (MG-CRS) that can proactively attract users' interests and naturally lead user-engaged dialogues with multiple conversational goals and diverse topics. Four tasks are often involved in MG-CRS, including Goal Planning, Topic Prediction, Item Recommendation, and Response Generation. Most existing studies address only some of these tasks. To handle the whole problem of MG-CRS, modularized frameworks are adopted where each task is tackled independently without considering their interdependencies. In this work, we propose a novel Unified MultI-goal conversational recommeNDer system, namely UniMIND. In specific, we unify these four tasks with different formulations into the same sequence-to-sequence (Seq2Seq) paradigm. Prompt-based learning strategies are investigated to endow the unified model with the capability of multi-task learning. Finally, the overall learning and inference procedure consists of three stages, including multi-task learning, prompt-based tuning, and inference. Experimental results on two MG-CRS benchmarks (DuRecDial and TG-ReDial) show that UniMIND achieves state-of-the-art performance on all tasks with a unified model. Extensive analyses and discussions are provided for shedding some new perspectives for MG-CRS.