论文标题

分布式的空中计算,用于快速分布式优化:波束形成设计和收敛分析

Distributed Over-the-air Computing for Fast Distributed Optimization: Beamforming Design and Convergence Analysis

论文作者

Lin, Zhenyi, Gong, Yi, Huang, Kaibin

论文摘要

分布式优化涉及分布式网络中共同功能的优化,该函数发现了从机器学习到车辆排的各种应用程序。它的主要操作是在设备上汇总所有本地状态信息(LSI)以更新其州。当LSI高尺寸或高机动性时,所需的大量消息交换和许多迭代会导致通信瓶颈。为了克服瓶颈,我们在这项工作中提出了分布式无线计算(AIRCOMP)的框架,以实现一步聚集,以通过利用所有设备的同时多播束式和多access通道的模拟波形叠加的属性来实现分布式优化。我们考虑两个设计标准。第一个是将相对于所需的平均功能值的总和AIRCOMP误差(即,总和均值误差(MSE))最小化。提出了一种有效的解决方案方法,是通过将非凸孔成形问题转换为等效的凹面分数程序,并通过将凸面编程嵌套到二分线搜索中来求解它。第二个标准称为“零效率(ZF)多播”,是迫使接收到的设备上接收到的空中聚合信号等于所需的功能值。在这种情况下,最佳光束形成允许封闭形式。 MMSE和ZF波束形成均表现出由常规MMSE/ZF预编码的平均列产生的质心结构。最后,分析了经典分布式优化算法的收敛性。发现分布式AirComp通过大大减少通信延迟来加速收敛。另一个关键发现是,ZF波束形成的表现优于MMSE设计,因为后者被证明会导致亚级别估计中的偏见。

Distributed optimization concerns the optimization of a common function in a distributed network, which finds a wide range of applications ranging from machine learning to vehicle platooning. Its key operation is to aggregate all local state information (LSI) at devices to update their states. The required extensive message exchange and many iterations cause a communication bottleneck when the LSI is high dimensional or at high mobility. To overcome the bottleneck, we propose in this work the framework of distributed over-the-air computing (AirComp) to realize a one-step aggregation for distributed optimization by exploiting simultaneous multicast beamforming of all devices and the property of analog waveform superposition of a multi-access channel. We consider two design criteria. The first one is to minimize the sum AirComp error (i.e., sum mean-squared error (MSE)) with respect to the desired average-functional values. An efficient solution approach is proposed by transforming the non-convex beamforming problem into an equivalent concave-convex fractional program and solving it by nesting convex programming into a bisection search. The second criterion, called zero-forcing (ZF) multicast beamforming, is to force the received over-the-air aggregated signals at devices to be equal to the desired functional values. In this case, the optimal beamforming admits closed form. Both the MMSE and ZF beamforming exhibit a centroid structure resulting from averaging columns of conventional MMSE/ZF precoding. Last, the convergence of a classic distributed optimization algorithm is analyzed. The distributed AirComp is found to accelerate convergence by dramatically reducing communication latency. Another key finding is that the ZF beamforming outperforms the MMSE design as the latter is shown to cause bias in subgradient estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源