论文标题

主观QoE分析的现实视频序列

Realistic Video Sequences for Subjective QoE Analysis

论文作者

Hodzic, Kerim, Cosovic, Mirsad, Mrdovic, Sasa, Quinlan, Jason J., Raca, Darijo

论文摘要

通过互联网流媒体(Live and ocult)流媒体播放的多媒体是现代互联网的基石,占所有流量的60%以上。由于需求量如此之高,提供出色的用户体验是一项至关重要且具有挑战性的任务。为了评估用户QOE,许多研究人员部署了主观质量评估,参与者人工注入各种时间和空间障碍的视频。为了帮助当前的努力弥合目标视频QOE指标与用户体验之间的差距,我们开发了Dashrestreamer,这是一个开源框架,用于在真实网络中重新创建适应性流式传输的视频。 Dashrestreamer使用了由A算法创建的日志,在不受控制的环境(即有线或无线网络)中运行,在一个视频文件中编码视觉更改和失速事件。这些视频适用于模仿现实网络条件的主观QOE评估。 为了补充Dashrestreamer,我们根据从实际移动和无线网络收集的视频日志重新创建234个现实的视频剪辑。此外,我们的数据集还包含两个视频日志,其中包含hasalgorithm和网络带宽配置文件的所有决定,说明了吞吐量分布。我们认为,该数据集和框架将允许其他研究人员追求最终边界,以了解视频Qoe动力学的影响。

Multimedia streaming over the Internet (live and on demand) is the cornerstone of modern Internet carrying more than 60% of all traffic. With such high demand, delivering outstanding user experience is a crucial and challenging task. To evaluate user QoE many researchers deploy subjective quality assessments where participants watch and rate videos artificially infused with various temporal and spatial impairments. To aid current efforts in bridging the gap between the mapping of objective video QoE metrics to user experience, we developed DashReStreamer, an open-source framework for re-creating adaptively streamed video in real networks. DashReStreamer utilises a log created by a HAS algorithm run in an uncontrolled environment (i.e., wired or wireless networks), encoding visual changes and stall events in one video file. These videos are applicable for subjective QoE evaluation mimicking realistic network conditions. To supplement DashReStreamer, we re-create 234 realistic video clips, based on video logs collected from real mobile and wireless networks. In addition our dataset contains both video logs with all decisions made by the HASalgorithm and network bandwidth profile illustrating throughput distribution. We believe this dataset and framework will permit other researchers in their pursuit for the final frontier in understanding the impact of video QoE dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源