论文标题
部分可观测时空混沌系统的无模型预测
Dissipative particle dynamics simulation study on ATRP-brush modification of variably shaped surfaces and biopolymer adsorption
论文作者
论文摘要
我们通过原子转移自由基聚合(ATRP)刷子生长提出了关于不同形状的引发剂嵌入式微粒(MPS)的表面修饰的耗散粒子动力学(DPD)模拟研究。表面发射的ATRP刷子生长会导致形成更球形的MP形状。我们对三种不同形式的粒子表面上的ATRP刷子生长进行了比较分析:杯表面,球形表面和平面表面(矩形/椎间盘形)。首先,我们建立了刷子生长的化学动力学:单体转化率和反应速率。接下来,我们通过计算径向分布函数,空间密度分布,回旋半径,流体动力半径和形状因子来说明刷子修饰表面的结构变化(形状修饰)。聚合物刷子修饰的颗粒是固定酶的载体材料。最后,我们研究了兼容溶液中ATRP刷子修饰颗粒上的生物聚合物吸附。特别是,我们探讨了ATRP刷新长度,生物聚合物链长度以及集中度对吸附过程的影响。我们的结果说明了增强的生物聚合物吸附,并增加了刷子长度,引发剂浓度和生物聚合物浓度。最重要的是,当吸附达到饱和时,平面表面与其他两个表面相比,生物聚合物更多。考虑到磁盘形的平面颗粒,杯子和球形颗粒,实验结果验证了相同的结果。
We present a dissipative particle dynamics (DPD) simulation study on the surface modification of initiator embedded microparticles (MPs) of different shapes via atom transfer radical polymerization (ATRP) brush growth. The surface-initiated ATRP-brush growth leads to the formation of a more globular MP shape. We perform the comparative analysis of ATRP-brush growth on three different forms of particle surfaces: cup surface, spherical surface, and flat surface (rectangular/disk-shaped). First, we establish the chemical kinetics of the brush growth: the monomer conversion and the reaction rates. We next argue the structure changes (shape-modification) of brush-modified surfaces by computing the radial distribution function, spatial density distribution, radius of gyration, hydrodynamic radius, and shape factor. The polymer brush-modified particles are well known as the carrier materials for enzyme immobilization. Finally, we study the biopolymer adsorption on ATRP-brush modified particles in a compatible solution. In particular, we explore the effect of ATRP-brush length, biopolymer chain length, and concentration on the adsorption process. Our results illustrate the enhanced biopolymer adsorption with increased brush length, initiator concentration, and biopolymer concentration. Most importantly, the flat surface loads more biopolymers than the other two surfaces when adsorption reaches saturation. The experimental results verified the same, considering the disk-shaped flat surface particle, cup, and spherical particles.