论文标题
画廊D.C。:设计搜索和知识发现的自动创建的GUI组件画廊
Gallery D.C.: Auto-created GUI Component Gallery for Design Search and Knowledge Discovery
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
GUI design is an integral part of software development. The process of designing a mobile application typically starts with the ideation and inspiration search from existing designs. However, existing information-retrieval based, and database-query based methods cannot efficiently gain inspirations in three requirements: design practicality, design granularity and design knowledge discovery. In this paper we propose a web application, called \tool that aims to facilitate the process of user interface design through real world GUI component search. Gallery D.C. indexes GUI component designs using reverse engineering and deep learning based computer vision techniques on millions of real world applications. To perform an advanced design search and knowledge discovery, our approach extracts information about size, color, component type, and text information to help designers explore multi-faceted design space and distill higher-order of design knowledge. Gallery D.C. is well received via an informal evaluation with 7 professional designers. Web Link: http://mui-collection.herokuapp.com/. Demo Video Link: https://youtu.be/zVmsz_wY5OQ.