论文标题

贝叶斯机器学习方法用于估计异质幸存者因果关系:适用于重症监护试验

A Bayesian Machine Learning Approach for Estimating Heterogeneous Survivor Causal Effects: Applications to a Critical Care Trial

论文作者

Chen, Xinyuan, Harhay, Michael O., Tong, Guangyu, Li, Fan

论文摘要

由急性呼吸窘迫综合征网络(ARDSNETWORK)ARDS ARDS ARDS ARDIRATION(ARMA)试验的动机,我们开发了一种灵活的贝叶斯机器学习方法,以估计始终表现层次层次层次造成临床临床效果时,始终表现的层次中的平均因果效应和异质性因果效应。我们采用了贝叶斯添加剂回归树(BART),以灵活为潜在的结果和潜在地层成员提供单独的模型。在对ARMA试验的分析中,我们发现,潮汐量低的治疗方法对返回家园的时间的结果对急性肺部受伤的参与者具有总体上的好处,但是在始终流寿子中的治疗效应中的实质性异质性是由性别和肺泡 - 肺泡氧气梯度最大的强大驱动的,该梯度是在基线时(基线)的五个物理学量(lungsial sefencia)。这些发现说明了所提出的方法如何指导该领域未来试验的预后丰富。我们还通过一项仿真研究证明,我们提出的贝叶斯机器学习方法优于其他参数方法,在减少平均因果效应和始终活跃物的估计因果因果效应中估计偏差。

Motivated by the Acute Respiratory Distress Syndrome Network (ARDSNetwork) ARDS respiratory management (ARMA) trial, we developed a flexible Bayesian machine learning approach to estimate the average causal effect and heterogeneous causal effects among the always-survivors stratum when clinical outcomes are subject to truncation. We adopted Bayesian additive regression trees (BART) to flexibly specify separate models for the potential outcomes and latent strata membership. In the analysis of the ARMA trial, we found that the low tidal volume treatment had an overall benefit for participants sustaining acute lung injuries on the outcome of time to returning home, but substantial heterogeneity in treatment effects among the always-survivors, driven most strongly by sex and the alveolar-arterial oxygen gradient at baseline (a physiologic measure of lung function and source of hypoxemia). These findings illustrate how the proposed methodology could guide the prognostic enrichment of future trials in the field. We also demonstrated through a simulation study that our proposed Bayesian machine learning approach outperforms other parametric methods in reducing the estimation bias in both the average causal effect and heterogeneous causal effects for always-survivors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源