论文标题

可调式费米式环中的持久式电流

Imprinting persistent currents in tunable fermionic rings

论文作者

Del Pace, G., Xhani, K., Falconi, A. Muzi, Fedrizzi, M., Grani, N., Rajkov, D. Hernandez, Inguscio, M., Scazza, F., Kwon, W. J., Roati, G.

论文摘要

环形几何形状中的持续电流在揭示超导体和介观电子系统的量子相一致性方面发挥了重要作用。多重连接的陷阱中的超速原子气体也表现出长寿命的超级气流,并且对超流体动力学的基本研究和作为原子电路的原型引起了极大的兴趣。在这里,我们报告了在均匀,可调的费米子环中实现超电流的实现。我们通过通用的相位刻痕技术在BCS-BEC交叉的所有制度中获得了精美的,快速控制量化的持续电流,使按需循环$ W $高达9。超级流通循环状态的高效率读出可以通过利用一个干扰素来实现局部信息,从而实现超级流通的协议,从而实现了局部信息。在没有外部引入的扰动的情况下,我们发现诱导的亚稳态超电流与原子样品一样长。相反,我们通过在环内插入一个小障碍物来触发和检查超电流衰变。对于高于临界值高的循环,观察到量化的电流通过涡流的发射(即量化的相滑)消散,我们直接对其进行了与数值模拟良好一致的图像。发现超级流变得不稳定的临界循环完全取决于相互作用强度,这是对单一费米气体的最大值。我们的结果表明,在宏观量子系统中快速,准确地控制了量化的集体激发,并建立强烈相互作用的费米子超流体作为原子能应用的出色候选者。

Persistent currents in annular geometries have played an important role in disclosing the quantum phase coherence of superconductors and mesoscopic electronic systems. Ultracold atomic gases in multiply connected traps also exhibit long-lived supercurrents, and have attracted much interest both for fundamental studies of superfluid dynamics and as prototypes for atomtronic circuits. Here, we report on the realization of supercurrents in homogeneous, tunable fermionic rings. We gain exquisite, rapid control over quantized persistent currents in all regimes of the BCS-BEC crossover through a universal phase-imprinting technique, attaining on-demand circulations $w$ as high as 9. High-fidelity read-out of the superfluid circulation state is achieved by exploiting an interferometric protocol, which also yields local information about the superfluid phase around the ring. In the absence of externally introduced perturbations, we find the induced metastable supercurrents to be as long-lived as the atomic sample. Conversely, we trigger and inspect the supercurrent decay by inserting a single small obstacle within the ring. For circulations higher than a critical value, the quantized current is observed to dissipate via the emission of vortices, i.e., quantized phase slips, which we directly image, in good agreement with numerical simulations. The critical circulation at which the superflow becomes unstable is found to depend starkly on the interaction strength, taking its maximum value for the unitary Fermi gas. Our results demonstrate fast and accurate control of quantized collective excitations in a macroscopic quantum system, and establish strongly interacting fermionic superfluids as excellent candidates for atomtronic applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源