论文标题
Factgraph:用语义图表示评估摘要中的事实
FactGraph: Evaluating Factuality in Summarization with Semantic Graph Representations
论文作者
论文摘要
尽管最近的抽象摘要有所改善,但大多数当前方法都会产生与源文档不一致的摘要,严重限制了其在现实世界应用中的信任和使用。最近的作品显示了使用文本或依赖性弧形识别事实错误识别的有希望的改进。但是,他们不会同时考虑整个语义图。为此,我们提出了Factgraph,该方法将文档分解为结构化含义表示(MR),该方法更适合于事实评估。 MRS描述核心语义概念及其关系,以规范形式汇总文档和摘要中的主要内容,并减少数据稀疏性。 Factgraph使用与结构感知适配器增强的图形编码来编码此类图,以根据图形连接性捕获概念之间的交互,以及使用基于适配器的文本编码器的文本表示。在不同基准上进行评估事实的实验表明,事实图的表现优于先前的方法高达15%。此外,Factgraph改善了识别内容可验证性错误的性能,并更好地捕获了下端级的事实不一致。
Despite recent improvements in abstractive summarization, most current approaches generate summaries that are not factually consistent with the source document, severely restricting their trust and usage in real-world applications. Recent works have shown promising improvements in factuality error identification using text or dependency arc entailments; however, they do not consider the entire semantic graph simultaneously. To this end, we propose FactGraph, a method that decomposes the document and the summary into structured meaning representations (MR), which are more suitable for factuality evaluation. MRs describe core semantic concepts and their relations, aggregating the main content in both document and summary in a canonical form, and reducing data sparsity. FactGraph encodes such graphs using a graph encoder augmented with structure-aware adapters to capture interactions among the concepts based on the graph connectivity, along with text representations using an adapter-based text encoder. Experiments on different benchmarks for evaluating factuality show that FactGraph outperforms previous approaches by up to 15%. Furthermore, FactGraph improves performance on identifying content verifiability errors and better captures subsentence-level factual inconsistencies.