论文标题
矩阵纠缠
Matrix Entanglement
论文作者
论文摘要
在量规/重力二元性中,量规理论侧面的矩阵自由度在紧急几何学上起着重要作用。在本文中,我们讨论了重力侧的纠缠如何被描述为矩阵自由度之间的纠缠。我们称之为“矩阵纠缠”的方法与几个小组最近提出和讨论的“目标空间纠缠”不同。我们考虑了几类量子状态,我们的方法可以发挥重要作用。当应用于模糊球体时,可以使用基质纠缠来定义平常的空间纠缠中的两种或五大世界体积理论,以正则化设置非扰动。另一个应用是在ADS5*S5中的一个小黑洞中可以蒸发而不连接到热浴的情况下,我们的方法建议该页面曲线的量规理论来源。部分裁定的国家的自由程度扮演着重要角色。
In gauge/gravity duality, matrix degrees of freedom on the gauge theory side play important roles for the emergent geometry. In this paper, we discuss how the entanglement on the gravity side can be described as the entanglement between matrix degrees of freedom. Our approach, which we call 'matrix entanglement', is different from 'target-space entanglement' proposed and discussed recently by several groups. We consider several classes of quantum states to which our approach can play important roles. When applied to fuzzy sphere, matrix entanglement can be used to define the usual spatial entanglement in two-brane or five-brane world-volume theory nonperturbatively in a regularized setup. Another application is to a small black hole in AdS5*S5 that can evaporate without being attached to a heat bath, for which our approach suggests a gauge theory origin of the Page curve. The confined degrees of freedom in the partially-deconfined states play the important roles.