论文标题
由电流超导体薄带中边缘缺陷产生的涡流喷射
Vortex jets generated by edge defects in current-carrying superconductor thin strips
论文作者
论文摘要
在足够大的传输电流下,$ i_ \ mathrm {tr} $,超导带边缘的缺陷充当进入其中的涡流的大门。这些涡流形成了一个喷气机,在缺陷附近狭窄,由于涡流移动到条带的相对边缘时,由于涡流的排斥而扩展,从而产生了横向电压$ v_ \ perp $。在这里,依靠竞争性涡旋 - 涡旋和$ i_ \ mathrm {tr} $ - Vortex互动的方程式,我们将Vortex喷气喷射成窄($ξ\ ll w \lysssimsimλ_\ Mathrm {eff} $ {$ W \ $ w \ gggipIalm /连贯长度,$ W $:带宽,$λ_\ Mathrm {eff} $:有效的穿透深度]。我们预测一个非单调依赖性$ v_ \ perp(i_ \ mathrm {tr})$,可以用在线上$ v_1v_2 $上放置在小距离$ l $上的霍尔电压引线,与边缘缺陷相距$ v_1v_2 $,并在$ l \ rightarrow -l -l $ reversal上更改其符号。对于狭窄的条,我们通过拟合$ v_ \ perp(i_ \ mathrm {tr},l)$数据的$ 1 \,μ$ $ m m mosi条带,具有单个边缘缺陷的单个边缘缺陷来比较理论预测与实验进行比较。对于宽条,涡流射流形状的衍生磁场依赖性与最近在PB桥中移动的涡流的实验观察结果一致。我们的发现与时间有关的Ginzburg-Landau模拟增强了,该模拟将重现计算出的Vortex喷气形状和$ v_ \ perp(i_ \ mathrm {tr},l)$ maxima。此外,随着$ i_ \ mathrm {tr} $的增加,数值建模揭示了涡流喷射到涡流河流的演变,从而补充了$ i_ \ mathrm {tr} $的整个范围内的分析理论。
At sufficiently large transport currents $I_\mathrm{tr}$, a defect at the edge of a superconducting strip acts as a gate for the vortices entering into it. These vortices form a jet, which is narrow near the defect and expands due to the repulsion of vortices as they move to the opposite edge of the strip, giving rise to a transverse voltage $V_\perp$. Here, relying upon the equation of vortex motion under competing vortex-vortex and $I_\mathrm{tr}$-vortex interactions, we derive the vortex jet shapes in narrow ($ξ\ll w\lesssimλ_\mathrm{eff}$) and wide ($w\ggλ_\mathrm{eff}$) strips [$ξ$: coherence length, $w$: strip width, $λ_\mathrm{eff}$: effective penetration depth]. We predict a nonmonotonic dependence $V_\perp(I_\mathrm{tr})$ which can be measured with Hall voltage leads placed on the line $V_1V_2$ at a small distance $l$ apart from the edge defect and which changes its sign upon $l\rightarrow -l$ reversal. For narrow strips, we compare the theoretical predictions with experiment, by fitting the $V_\perp(I_\mathrm{tr},l)$ data for $1\,μ$m-wide MoSi strips with single edge defects milled by a focused ion beam at distances $l = 16$-$80$\,nm from the line $V_1V_2$. For wide strips, the derived magnetic-field dependence of the vortex jet shape is in line with the recent experimental observations for vortices moving in Pb bridges with a narrowing. Our findings are augmented with the time-dependent Ginzburg-Landau simulations which reproduce the calculated vortex jet shapes and the $V_\perp(I_\mathrm{tr},l)$ maxima. Furthermore, with increase of $I_\mathrm{tr}$, the numerical modeling unveils the evolution of vortex jets to vortex rivers, complementing the analytical theory in the entire range of $I_\mathrm{tr}$.