论文标题

部分可观测时空混沌系统的无模型预测

Efficient Re-parameterization Operations Search for Easy-to-Deploy Network Based on Directional Evolutionary Strategy

论文作者

Yu, Xinyi, Wang, Xiaowei, Rong, Jintao, Zhang, Mingyang, Ou, Linlin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Structural re-parameterization (Rep) methods has achieved significant performance improvement on traditional convolutional network. Most current Rep methods rely on prior knowledge to select the reparameterization operations. However, the performance of architecture is limited by the type of operations and prior knowledge. To break this restriction, in this work, an improved re-parameterization search space is designed, which including more type of re-parameterization operations. Concretely, the performance of convolutional networks can be further improved by the search space. To effectively explore this search space, an automatic re-parameterization enhancement strategy is designed based on neural architecture search (NAS), which can search a excellent re-parameterization architecture. Besides, we visualize the output features of the architecture to analyze the reasons for the formation of the re-parameterization architecture. On public datasets, we achieve better results. Under the same training conditions as ResNet, we improve the accuracy of ResNet-50 by 1.82% on ImageNet-1k.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源