论文标题

部分可观测时空混沌系统的无模型预测

Complexity in the Lipkin-Meshkov-Glick Model

论文作者

Pal, Kunal, Pal, Kuntal, Sarkar, Tapobrata

论文摘要

我们通过热力学极限,通过范式Lipkin-Meshkov-Glick模型研究了具有无限范围相互作用的自旋系统中的复杂性。尼尔森复杂性(NC)和Fubini-study复杂性(FSC)的精确表达式被得出,这有助于我们在其他已知的自旋模型中与复杂性相比建立几个区别特征。在靠近相位过渡的时间无关的LMG模型中,NC在对数上差异很大,就像纠缠熵一样。但是,值得注意的是,在时间依赖的情况下,这种差异被有限的不连续性所取代,正如我们使用的刘易斯·里森菲尔德(Lewis-Riesenfeld)相关的不变性操作员的理论所显示的那样。与准无自旋模型相比,LMG模型变体的FSC显示出新的行为。也就是说,当目标(或参考)状态在分离架附近时,它在对数方面有分歧。数值分析表明,这是由于以下事实:以任意边界条件开头的大地测量被“吸引”到分隔质中,并且在这条线附近,地球仿射参数的有限变化会导致地理长度的无限变化。该模型的NC也共享了相同的差异。

We study complexity in a spin system with infinite range interaction, via the paradigmatic Lipkin-Meshkov-Glick model, in the thermodynamic limit. Exact expressions for the Nielsen complexity (NC) and the Fubini-Study complexity (FSC) are derived, that helps us to establish several distinguishing features compared to complexity in other known spin models. In a time-independent LMG model, close to phase transition, the NC diverges logarithmically, much like the entanglement entropy. Remarkably however, in a time dependent scenario, this divergence is replaced by a finite discontinuity, as we show by using the Lewis-Riesenfeld theory of time-dependent invariant operators. The FSC of a variant of the LMG model shows novel behaviour compared to quasi free spin models. Namely, it diverges logarithmically when the target (or reference) state is near the separatrix. Numerical analysis indicates that this is due to the fact that geodesics starting with arbitrary boundary conditions are "attracted" towards the separatrix and that near this line, a finite change in the affine parameter of the geodesic produces an infinitesimal change of the geodesic length. The same divergence is shared by the NC of this model as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源