论文标题
抑制了抑制的非绝热纯量子量子计算
Decoherence-Suppressed Non-adiabatic Holonomic Quantum Computation
论文作者
论文摘要
非绝热的全能量子计算〜(NHQC)提供了一种由于其几何特征而构造坚固且高保真量子门的重要方法。但是,NHQC比常规动力门更敏感,因为它需要辅助中间状态。在这里,我们利用汉密尔顿反向工程技术来研究中间状态对NHQC门的影响的影响,并提出新的方案来构建任意单Qubit的全体式栅极和非平凡的两种Quibitial Qubit的全能门,具有高ide fidelity and in high Fidelity and for the decoerence。尽管该提出的方法是通用的,并且可以应用于许多实验平台,例如超导量子,被困的离子,量子点,在这里我们以氮气胶合(NV)为中心,以表明登机口富度可以从89 \%\%\%显着提高到最近的实验NHS [89 \%\%\%。莱特牧师。 119,140503(2017);纳特。 Photonics 11,309(2017);选择。 Lett。 43、2380(2018)],对抗碳的鲁棒性也可以显着改善。总而言之,我们的方案为易于故障的几何量子计算提供了一种有希望的方法。
Nonadiabatic holonomic quantum computation~(NHQC) provides an essential way to construct robust and high-fidelity quantum gates due to its geometric features. However, NHQC is more sensitive to the decay and dephasing errors than conventional dynamical gate since it requires an ancillary intermediate state. Here, we utilize the Hamiltonian reverse engineering technique to study the influence of the intermediate state-decoherence on the NHQC gate fidelity, and propose the novel schemes to construct the arbitrary single-qubit holonomic gate and nontrivial two-qubit holonomic gate with high fidelity and robustness to the decoherence. Although the proposed method is generic and can be applied to many experimental platforms, such as superconducting qubits, trapped ions, quantum dots, here we take nitrogen-vacancy (NV) center as an example to show that the gate fidelity can be significantly enhanced from 89\% to 99.6\% in contrast to the recent experimental NHQC schemes [Phys. Rev. Lett. 119, 140503 (2017); Nat. Photonics 11, 309 (2017); Opt. Lett. 43, 2380 (2018)], and the robustness against the decoherence can also be significantly improved. All in all, our scheme provides a promising way for fault-tolerant geometric quantum computation.