论文标题

在低误报条件下偷窃和逃避恶意软件分类器和防病毒软件

Stealing and Evading Malware Classifiers and Antivirus at Low False Positive Conditions

论文作者

Rigaki, Maria, Garcia, Sebastian

论文摘要

模型窃取攻击已成功地用于许多机器学习域中,但是对这些攻击如何与执行恶意软件检测的模型相对的了解很少。恶意软件检测,通常,安全域具有独特的条件。特别是,对于低误报率(FPR)有非常强烈的要求。使用机器学习的防病毒产品(AVS)是非常复杂的系统,可窃取恶意软件,并且整个环境本质上都是对抗性的。这项研究评估了积极的学习模型窃取公开可用的独立机器学习恶意软件分类器以及防病毒产品的攻击。该研究提出了一种用于代孕模型(DualFFNN)的新神经网络架构,并提出了一种新的模型窃取攻击,将转移和主动学习的替代创建(FFNN-TL)结合在一起。使用不到原始培训数据集的不到4%的目标模型,我们实现了独立分类器的良好替代品,最多达99 \%。 AV系统的良好代理也接受了多达99%的协议和不到4,000个查询的培训。该研究使用最好的代理来生成对抗性恶意软件,以逃避独立和AV的目标模型(具有和没有互联网连接)。结果表明,替代模型可以生成逃避目标的对抗性恶意软件,但成功率较低,而不是直接使用目标模型来生成对抗性恶意软件。但是,使用替代物仍然是一个不错的选择,因为将AVS用于恶意软件生成非常耗时,并且当AVS连接到Internet时很容易检测到。

Model stealing attacks have been successfully used in many machine learning domains, but there is little understanding of how these attacks work against models that perform malware detection. Malware detection and, in general, security domains have unique conditions. In particular, there are very strong requirements for low false positive rates (FPR). Antivirus products (AVs) that use machine learning are very complex systems to steal, malware binaries continually change, and the whole environment is adversarial by nature. This study evaluates active learning model stealing attacks against publicly available stand-alone machine learning malware classifiers and also against antivirus products. The study proposes a new neural network architecture for surrogate models (dualFFNN) and a new model stealing attack that combines transfer and active learning for surrogate creation (FFNN-TL). We achieved good surrogates of the stand-alone classifiers with up to 99\% agreement with the target models, using less than 4% of the original training dataset. Good surrogates of AV systems were also trained with up to 99% agreement and less than 4,000 queries. The study uses the best surrogates to generate adversarial malware to evade the target models, both stand-alone and AVs (with and without an internet connection). Results show that surrogate models can generate adversarial malware that evades the targets but with a lower success rate than directly using the target models to generate adversarial malware. Using surrogates, however, is still a good option since using the AVs for malware generation is highly time-consuming and easily detected when the AVs are connected to the internet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源