论文标题

ADA检测器:快速探索的自适应前沿检测器

Ada-Detector: Adaptive Frontier Detector for Rapid Exploration

论文作者

Sun, Zezhou, Wu, Banghe, Xu, Chengzhong, Kong, Hui

论文摘要

在本文中,我们提出了一种有效的前沿检测器方法,基于自动探索的自适应快速探索随机树(RRT)。机器人在探索未知环境时可以实现实时增量边界检测。首先,我们的检测器通过感测周围环境结构来自适应地调节RRT的采样空间。根据环境结构,自适应采样空间可以大大提高RRT的成功采样率(成功添加到RRT树的样品数量与采样尝试的数量之比),并根据环境结构并控制RRT的膨胀偏置。其次,通过生成不均匀的分布式样品,我们的方法还解决了滑动窗口中RRT的过度采样问题,其中均匀的随机抽样导致在两个相邻滑动窗口之间的重叠区域中过度采样。这样,我们的检测器更倾向于在最新的探索区域进行采样,从而提高了前沿检测的效率并实现了增量检测。我们在三个模拟基准方案中验证了我们的方法。实验比较表明,与SOTA方法DSV计划者相比,我们将边界检测运行时减少了约40%。

In this paper, we propose an efficient frontier detector method based on adaptive Rapidly-exploring Random Tree (RRT) for autonomous robot exploration. Robots can achieve real-time incremental frontier detection when they are exploring unknown environments. First, our detector adaptively adjusts the sampling space of RRT by sensing the surrounding environment structure. The adaptive sampling space can greatly improve the successful sampling rate of RRT (the ratio of the number of samples successfully added to the RRT tree to the number of sampling attempts) according to the environment structure and control the expansion bias of the RRT. Second, by generating non-uniform distributed samples, our method also solves the over-sampling problem of RRT in the sliding windows, where uniform random sampling causes over-sampling in the overlap area between two adjacent sliding windows. In this way, our detector is more inclined to sample in the latest explored area, which improves the efficiency of frontier detection and achieves incremental detection. We validated our method in three simulated benchmark scenarios. The experimental comparison shows that we reduce the frontier detection runtime by about 40% compared with the SOTA method, DSV Planner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源