论文标题
汇率将多个访问辅助移动边缘计算在认知无线网络中
Rate Splitting Multiple Access Aided Mobile Edge Computing in Cognitive Radio Networks
论文作者
论文摘要
在本文中,我们研究了认知无线网络中的多个访问(RSMA)辅助移动边缘计算(MEC)的速率。我们提出了一个RSMA方案,该方案使二级用户能够利用动态速率拆分而不会降低主要用户的卸载,从而将任务卸载到MEC服务器。最佳速率拆分参数的表达式最大化了二级用户可实现的速率以及所提出的RSMA方案的成功计算概率,以封闭形式得出。我们通过共同优化任务卸载比和任务卸载时间并获得封闭形式的最佳解决方案来提出一个问题,以最大程度地提高成功计算概率。仿真结果阐明了所提出的RSMA方案比现有的非正交多访问方案实现了更高的成功计算概率。
In this paper, we investigate rate splitting multiple access (RSMA) aided mobile edge computing (MEC) in a cognitive radio network. We propose a RSMA scheme that enables the secondary user to offload tasks to the MEC server utilizing dynamic rate splitting without deteriorating the primary user's offloading. The expressions for the optimal rate splitting parameters that maximize the achievable rate for the secondary user and successful computation probability of the proposed RSMA scheme are derived in closed-form. We formulate a problem to maximize successful computation probability by jointly optimizing task offloading ratio and task offloading time and obtain the optimal solutions in closed-form. Simulation results clarify that the proposed RSMA scheme achieves a higher successful computation probability than the existing non-orthogonal multiple access scheme.