论文标题

部分可观测时空混沌系统的无模型预测

A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption

论文作者

de Carvalho, Alexandre Nolasco, Luna, Tito Luciano Mamani

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper we study the existence of solutions of a one-dimensional eigenvalue problem $-\left(|ϕ_x|^{p-2}ϕ_x\right)_x=λ\left(|ϕ|^{q-2}ϕ-f(ϕ)\right)$ such that $ϕ(0)=ϕ(1)=0$, where $p,q>1$, $λ$ is a positive real parameter and $f$ is a continuous (not necessarily odd) function. Our goal is to give a complete description of solutions of this problem. We completely characterize the set of solutions of this problem, which may be uncountable. For $1<p\neq 2$, the existing results treat only the case when $f$ is either odd and a power (see \cite{TAYA}) or when $p=q$ (\cite{Guedda-Veron}). Our method of proof rely on a careful analysis of the phase diagram associated with this equation, refining the regularity results of \cite{otani} and characterizing the exact points where we may have $C^2$ regularity of solutions including some points $χ\in (0,1)$ for which $ϕ_x(χ)=0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源