论文标题
对称空间$ \ mathrm {gl} _n(e)/\ mathrm {gl} _n(f)$的光谱扩展
A spectral expansion for the symmetric space $\mathrm{GL}_n(E)/\mathrm{GL}_n(F)$
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this article we state and prove the spectral expansion of theta series attached to the symmetric space $\mathrm{GL}_n(E)/\mathrm{GL}_n(F)$ where $n\geq 1$ and $E/F$ is a quadratic extension of number fields. This is an important step towards the fine spectral expansion of the Jacquet-Rallis trace formula for general linear groups. To obtain our result, we extend the work of Jacquet-Lapid-Rogawski on intertwining periods to the case of discrete automorphic representations. The expansion we get is an absolutely convergent integral of relative characters built upon Eisenstein series and intertwining periods. We also establish a crucial but technical ingredient whose interest lies beyond the focus of the article: we prove bounds for discrete Eisenstein series of $\mathrm{GL}_n$ on a neighborhood of the imaginary axis extending previous works of Lapid on cuspidal Eisenstein series. We even need a variant of such bounds on some shifts of the imaginary axis.