论文标题
伪代码的代码和双色膜
Codescent and bicolimits of pseudo-algebras
论文作者
论文摘要
我们在假单胞菌的背景下对单纳理论的共完成结果进行了分类。我们首先证明了一个普遍的结果,该结果表明,在任何两类中,可以通过oplax bicolimits和代码对象的双质量构建加权双晶象。在对伪符号及其伪代数的先决条件之后,我们给出了二维的linton定理,从而降低了2类伪代核的双核,以使其具有代码物体的双质量相位。最后,我们证明了在双面伪造的情况下要实现的条件,从而确保了双焦点。
We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and their pseudo-algebras, we give a 2-dimensional Linton theorem reducing bicocompleteness of 2-categories of pseudo-algebras to existence of bicoequalizers of codescent objects. Finally we prove this condition to be fulfilled in the case of a bifinitary pseudomonad, ensuring bicocompleteness.